Aterramento de Equipamentos Eletrônicos

Também chamados Equipamentos de Tecnologia da Informação (ETI), incluem: medição de aterramento

– equipamentos de telecomunicação e de transmissão de dados, equipamentos de processamentos de dados ou instalações que utilizam transmissão de sinais com retorno à terra, interna ou externamente ligada a uma edificação; medição de aterramento Florianópolis
– fontes de corrente contínua que alimentam ETIs no interior de uma edificação;
– equipamentos e instalações de CPCT — Central Privativa de Comutação Telefônica (PABX); redes locais; – sistemas de alarme contra incêndio e contra roubo; medição de aterramento Florianópolis
– sistemas de automação; medição de aterramento Florianópolis

De modo a reduzir os problemas de interferências, a alimentação desses equipamentos nunca deve ser em esquema TN- C, o que significa que devem ser lançados condutores neutro e de proteção separados desde a origem da instalação (Quadro de Distribuição Principal da edificação e aterrado na BEP da mesma – esquema TN­C­S).

Se a instalação elétrica possuir um transformador, grupo gerador, sistemas UPS (Uninterruptible Power Systems) ou fonte análoga responsável pela alimentação de ETIs, e se essa fonte for, ela própria, alimentada em esquema TN­C, deve­se adotar o esquema TN­C­S em sua saída.

A BEP pode ser prolongada por um Barramento de Equipotencialidade Funcional (BEF) para aterrar os ETIs em qualquer ponto da edificação onde os mesmos se encontrem instalados. Ao BEF podem ser ligados:

– quaisquer dos elementos normalmente ligados à barra BEP da edificação;
– blindagens e proteções metálicas dos cabos e equipamentos de sinais;
– condutores de equipotencialização dos sistemas de trilhos;

– condutores de aterramento dos DPSs;
– condutores de aterramento de antenas de radiocomunicação;
– condutor de aterramento do polo “terra” de alimentações em corrente contínua ETIs;
– condutores de aterramento funcional;
– condutores equipotencialização que interligam o eletrodo de aterramento dos sistemas de proteção contra descargas atmosféricas;
– condutores de ligações equipotenciais suplementares.

Alugue nossos equipamentos ou contrate nossos serviços.


Eletrodos de Aterramento

O eletrodo de aterramento pode ser constituído por um único elemento ou por um conjunto de elementos. O termo tanto se aplica a uma simples haste enterrada quanto a várias hastes enterradas e interligadas e, ainda, a outros tipos de condutores em diversas configurações. aluguel de terrometro

Um eletrodo deve oferecer para diversos tipos de corrente (faltas para a terra, descargas atmosféricas, eletrostáticas, de supressores de surto etc.) um percurso de baixa impedância para o solo. A eficiência do aterramento é caracterizada, em princípio, por uma baixa resistência. aluguel de terrometro

Na realidade, o fenômeno depende de muitos fatores, sobretudo a resistividade do solo, estendida a todo o volume de dispersão, que representa a maior incógnita por ser bastante variável segundo a natureza do terreno, a umidade, a quantidade de sais dissolvidos e a temperatura (quanto maior a resistividade do terreno, maior a resistência de aterramento, mantidas as demais condições).

Devido à incerteza e à dificuldade na obtenção dos dados, é suficiente que o dimensionamento do aterramento forneça, no mínimo, as seguintes indicações: aluguel de terrometro
– os materiais a serem utilizados;
– a geometria do eletrodo;
– a locação no terreno.

Na prática, é utilizado um eletrodo em anel lançado no perímetro da edificação, que pode ser constituído por condutores horizontais e hastes interligadas entre si, diretamente enterrados no solo e/ou pelas próprias ferragens das fundações da edificação.

Alugue nossos equipamentos ou contrate nossos serviços.

Medição de Aterramento União da Vitória e Porto União.

RESISTÊNCIA DE ATERRAMENTO

Uma conexão à terra, apresenta resistência, capacitância e indutância, cada qual influindo na capacidade de condução de corrente para o solo. Em princípio, não deve se pensar apenas numa resistência de aterramento, mas numa impedância. medição de aterramento Florianópolis

Para condições de baixa freqüência, baixas correntes e valores de resistividade do solo não muito elevados, são desprezíveis os efeitos capacitivos e de ionização do solo e o mesmo comporta-se praticamente como uma resistência linear. medição de aterramento Florianópolis

Nas aplicações de alta freqüência (por exemplo, em telecomunicações), é necessário considerar-se o efeito capacitivo, principalmente nos solos de alta resistividade e, também, a influência da reatância indutiva ao longo dos condutores e eletrodos. Tais efeitos estão também presentes para as ondas impulsivas de corrente e tensão, como aquelas associadas a descargas atmosféricas, pois as freqüências representativas desse tipo de onda são bastantes elevadas. medição de aterramento

Quantificação da Resistência de Aterramento.

Entende-se por aterramento a ligação elétrica de um equipamento ou componente de um sistema elétrico à terra por meio de dispositivos condutores de eletricidade adequados. Ao ser percorrido por uma corrente, o aterramento comporta-se como uma impedância complexa. Em condições de baixa freqüência, tal impedância aproxima-se de uma resistência. Medição de aterramento Florianópolis

O termo adotado para designar a resistência oferecida à passagem de uma corrente elétrica para o solo através de um aterramento é resistência de aterramento, também conhecida como resistência de terra.

A quantificação do valor da resistência de aterramento pode ser traduzida através da relação entre o valor da tensão resultante no eletrodo e o valor da corrente injetada no solo através do mesmo.

RT = VT I

#mediçãodeaterramento, #aterramentoflorianópolis, #aluguel de terrometro, #resistênciadeaterramento, #mediçãodeaterramentoflorianópolis, #aterramentobiguaçu, #aterramentopalhoça, #mediçãodeaterramentopalhoça, #mediçãodeaterramentobiguaçu, #locaçãodeterrometro

Posicionamento para um SPDA não isolado

Para cada SPDA não isolado, o número de condutores de descida não pode ser inferior a dois, mesmo
se o valor do cálculo do perímetro dividido pelo espaçamento para o nível correspondente resultar
em valor inferior. No posicionamento, utilizar o espaçamento mais uniforme possível entre
os condutores de descida ao redor do perímetro. Aluguel de Miliohmimetro Florianópolis

Captores de um SPDA não isolado da estrutura a ser protegida podem ser instalados como a seguir:

a) se a cobertura é feita por material não combustível, os condutores do subsistema de captação
podem ser posicionados na superfície da cobertura; Aluguel de miliohmimetro Florianópolis

b) se a cobertura for feita por material prontamente combustível, cuidados especiais devem
ser tomados em relação à distância entre os condutores do subsistema de captação e o material.
Para coberturas de sapé ou palha onde não sejam utilizadas barras de aço para sustentação
do material, uma distância não inferior a 0,15 m é adequada. Para outros materiais combustíveis, 0,10 m;

c) partes facilmente combustíveis da estrutura a ser protegida não podem permanecer em contato
direto com os componentes de um SPDA externo e não podem ficar abaixo de qualquer
componente metálico que possa derreter ao ser atingido pela descarga atmosférica (ver 5.2.5).
Devem ser considerados componentes menos combustíveis como folhas de madeira.

Componentes naturais

As seguintes partes de uma estrutura podem ser consideradas como captores naturais e partes
de um SPDA: Aluguel de miliohmimetro Florianópolis

a) chapas metálicas cobrindo a estrutura a ser protegida, desde que:
— a continuidade elétrica entre as diversas partes seja feita de forma duradoura (por exemplo, solda
forte, caldeamento, frisamento, costurado, aparafusado ou conectado com parafuso e porca);
— a espessura da chapa metálica não seja menor que o valor t ́ fornecido na Tabela 3, se não for importante que se previna a perfuração da chapa ou se não for importante considerar a ignição de qualquer material inflamável abaixo da cobertura;
— a espessura da folha metálica não seja menor que o valor t fornecido na Tabela 3, e for necessário precauções contra perfuração ou se for necessário considerar os problemas
com pontos quentes;

Trecho retirado da NBR5419-3/2015

Inspeções em SPDA União da Vitória

#alugueldemiliohmimetro, #inspeçõesdespda, #alugueldeequipamentosflorianópolis, #spdaflorianópolis, #spdapalhoça, #alugueldemiliohmimetropalhoça, #alugueldemiliohmimetrobiguaçu, #locaçãodemiliohmimetro, #pararaiosflorianópolis, #pararaiosbiguaçu, #pararaiossãojosé, #pararaiospalhoça, #alugueldemiliohmimetrosãojosé

Termografia –

Monitoramento e Manutenção preditiva Termografia Florianópolis

Atualmente, o uso do sensoriamento térmico e imagens térmicas para o monitoramento e manutenção preditiva, é provavelmente o mais comum de todas as aplicações dentro da termografia. De verificações pontuais periódicas das temperaturas de mancais de máquinas de rotação ou quadros elétricos até uso para programas de manutenção preditiva totalmente documentada em grandes plantas. O monitoramento das condições de funcionamento é cada vez mais utilizado com a implantação de mais equipamentos de termográfica (KAPLAN, 2007). Termografia Florianópolis

Muitas vezes a implantação desses programas de monitoramento com equipamentos de termografia, é marcada por comportamento errático ou uso operacional incorreto do equipamento, tornando-se uma operação dispendiosa e ineficiente, o que leva ao fracasso desse tipo de serviço.

O uso de sensores térmicos de infravermelho e geradores de imagens têm crescido ao longo dos últimos 25 anos e se tornado universalmente aceito para a operação e manutenção de usinas de energia e transmissão. Os dados de termografia de centenas de pesquisas de linha de energia foram recolhidos e as normas têm sido desenvolvidas para o comportamento térmico de equipamentos elétricos e distribuição elétrica. Termografia Florianópolis

Atualmente, no Brasil, a ABNT possui diversas normas sobre o tema “Termografia”, e que podem ser utilizadas como referência. A Tabela 3 apresenta as normas em vigor.

Tabela 3 – Normas ABNT sobre Termografia

ABNT-NBR-16292:2014 Ensaios não destrutivos — Termografia — Medição e compensação da temperatura aparente refletida utilizando câmeras termográficas

ABNT-NBR-15572:2013 Ensaios não destrutivos — Termografia — Guia para inspeção de equipamentos elétricos e mecânicos

ABNT-NBR-15866:2010 Ensaio não destrutivo — Termografia — Metodologia de avaliação de temperatura de trabalho de equipamentos em sistemas elétricos

ABNT-NBR-15763:2009 Ensaios não destrutivos – Termografia – Critérios de definição de periodicidade de inspeção em sistemas elétricos de potência

ABNT-NBR-15718:2009 Ensaios não destrutivos — Termografia — Guia para verificação de termovisores

ABNT-NBR-15424:2006 Ensaios não destrutivos – Termografia – Terminologia

Contrate nossos serviços para análise termográfica em instalações elétricas. Termografia em União da Vitória e Região.

#alugueldecameratermografica, #termografiaflorianópolis, #termografiasãojosé, #termografiapalhoça, #termografiabiguaçu, #laudiodetermografia, #termografiaelétricaflorianópolis, #termografiaemquadorselétricos

Aterramentos em fundação.

Aterramentos em fundação de edificação.

A NBR 5410:2004, no item 6.3.5.2.1 (Subsistema de Aterramento), estabelece:
“Do ponto de vista da proteção contra o raio, um subsistema de aterramento único integrado à estrutura é preferível e adequado para todas as finalidades (ou seja, proteção contra o raio, sistemas de potência de baixa tensão e sistemas de sinal).” para raios São José

A utilização das ferragens de fundação de edificações como elementos naturais para o aterramento de instalações de baixa tensão e de sistemas de proteção de estruturas e edificações contra descargas atmosféricas diretas é uma técnica recomendada pelas normas brasileiras (NBR 5410:2004 e NBR 5419:2005) e de outros países. para raios São José

O item 6.4.1.1.10 da NBR 5410:2004 estabelece que, no caso de fundações em alvenaria, o eletrodo de aterramento pode ser constituído por uma fita de aço ou barra de aço de construção, imersa no concreto das fundações, formando um anel em todo o perímetro da edificação. A fita deve ter, no mínimo, 100 mm2 de seção e 3 mm de espessura; além disso, deve ser disposta na posição vertical. A barra precisa ter, no mínimo, 95 mm2 de seção. A fita ou a barra tem de ser envolvida por uma camada de concreto com espessura mínima de 5 cm. para raios São José

A NBR 5419:2005 admite a alternativa anterior para esse tipo de aterramento, assim como a utilização das armações de aço das estacas, de blocos de fundações e de vigas baldrame, que devem ser firmemente amarradas com arame torcido em cerca de 50% dos cruzamentos, sendo que as barras de aço precisam ser sobrepostas em uma extensão mínima de 20 vezes o seu diâmetro com pelo menos dois estribos.

O uso das armaduras do concreto armado da edificação como elementos naturais do sistema de aterramento e de proteção contra descargas atmosféricas permite uma melhor distribuição da corrente do raio entre as colunas, com a redução dos campos magnéticos no interior da estrutura, beneficiando, também, a equalização dos potenciais.

Veja o Curso que escolhemos para você sair na frente com melhores salários:

Aprenda CLP do ZERO

  • Aprenda CLP Siemens (Básico e Intermediário)
  • Aprenda CLP Siemens AVANÇADO
  • Aprenda CLP Rockwell Básico e Intermediário
  • BÔNUS 1 – Ebook Aprenda CLP em 21 minutos ou menos
  • BÔNUS 2 – Ebook Faça o LinkedIn trabalhar a seu Favor
  • Mais de 20 horas de Video Aulas Gravadas
  • Acesso Imediato Após Confirmação do Pagamento
  • Super Grupo Secreto no Telegram (valor Inestimável)
Compre aqui! Confira a página de vendas e tire suas dúvidas.

#alugueldemiliohmimetro, #alugueldemiliohmimetroFlorianópolis, #alugueldemiliohmimetropalhoça, #alugueldemiliohmimetrobiguaçu, #inspeçãodespdaflorianópolis, #inspeçãodespdasãojosé, #inspeçãodespdapalhoça, #inspeçãodespdabiguaçu, #inspeçãodepararaios, #pararaiosflorianópolis, #pararaiossãojosé, #pararaiospalhoça, #pararaiosbiguaçu, #manutençãodespdaflorianópolis, #manutençãodespdasãojosé,

MPS Medidas de Proteção contra Surtos (MPS)

9.1 Princípios gerais Para raios Florianópolis

Para alcançar um sistema de proteção eficiente e economicamente viável, o projeto deve ser
desenvolvido durante a concepção inicial da edificação e antes do início da sua construção.

Esta recomendação possibilita otimizar o uso dos componentes naturais da estrutura e escolher
o melhor caminho para a passagem dos cabos e para a localização dos equipamentos.

Para uma reforma de estruturas existentes, o custo das MPS é geralmente mais alto do que o custo
para novas estruturas. Entretanto, é possível minimizar este custo por uma definição apropriada
das ZPR, utilizando ou aperfeiçoando as ZPR existentes. Para raios Florianópolis

Uma proteção adequada pode ser alcançada somente se:

a) as disposições são definidas por um especialista em proteção contra descargas atmosféricas;
b) existe uma boa coordenação entre os diferentes especialistas envolvidos na construção
da edificação e nas MPS (por exemplo, engenheiros civil e eletricista);
c) o plano de gerenciamento de 9.2 é seguido. Para raios Florianópolis
As MPS devem ser mantidas ao longo do tempo pela inspeção e manutenção periódicas.
Após alterações relevantes na estrutura ou nas medidas de proteção, uma nova avaliação de risco
deve ser realizada.

9.2 Plano de gerenciamento de MPS

O planejamento e coordenação das MPS requer um plano de gerenciamento, que começa com uma análise inicial de risco (ABNT NBR 5419-2) para determinar as medidas de proteção necessárias para reduzir os riscos para um nível tolerável. Para alcançar este objetivo, devem ser determinadas as zonas de proteção contra raios.

De acordo com os NP definidos na ABNT NBR 5419-1, e as medidas de proteção
adotadas, os seguintes passos devem ser adotados:

a) fornecimento de um sistema de aterramento, compreendendo uma interligação para equipoten-
cialização e um subsistema de aterramento;

b) equipotencialização das partes metálicas externas e linhas metálicas entrando na estrutura dire-
tamente ou por meio de DPS;

c) integração dos sistemas internos em uma interligação para equipotencialização;
d) implementação de blindagens espaciais combinadas com o roteamento e blindagens das linhas;
e) recomendações para a coordenação de DPS;
f) determinação das interfaces isolantes adequadas;
g) medidas especiais para estruturas existentes, se necessárias.

Após estas medidas, a relação custo-benefício das medidas selecionadas deve ser reavaliada
e otimizada utilizando novamente o método de análise de risco.

Aluguel de Miliohmimetro, aluguel de câmera termográfica, aluguel de terrometro, aluguel de solda exotérmica.
Danos causados em sistemas elétricos e eletrônicos.
A.2.1 Fonte de danos. Para raios Florianópolis

A fonte primária de danos é a corrente descarga atmosférica e seu campo magnético associado,
que tem a mesma forma de onda da corrente da descarga atmosférica.

A.2.2 Objeto dos danos para raios Florianópolis

Sistemas internos instalados na estrutura ou dentro dela, com suportabilidade limitada aos surtos de tensão e campos magnéticos, podem ser danificados ou apresentar falhas no funcionamento quando sujeitos aos efeitos de descargas atmosféricas e seus campos magnéticos subsequentes.

Sistemas instalados fora de uma estrutura podem estar em risco devido ao campo magnético não atenuado e, se posicionados em local exposto, devido a surtos provocados pela corrente elétrica
completa de uma descarga atmosférica direta. Para raios Florianópolis


Sistemas instalados dentro da estrutura podem estar sujeitos a riscos devido a surtos internos conduzidos ou induzidos e devido a surtos externos conduzidos pelas linhas que entram na estrutura. Para detalhes relacionados à suportabilidade das instalações elétricas e de alguns equipamentos, as seguintes normas são pertinentes:


a) a tensão suportável ao impulso das instalações de energia é definida na ABNT NBR 5410:2004,
Tabela 31 e varia conforme a tensão eficaz de alimentação;
b) a suportabilidade dos equipamentos de telecomunicação é definido na ITU-T K.20, K.2 e K.45.
A suportabilidade dos equipamentos é geralmente definida nos dados especificados para o produto, ou pode ser ensaiada.
— contra surtos conduzidos utilizando IEC 61000-4-5 com níveis de ensaio para tensão:
0,5 kV – 1 kV – 2 kV e 4 kV na forma de onda 1,2/50 μs e com níveis de ensaio para corrente:
0,25 kA – 0,5 kA – 1 kA e 2 kA na forma de onda 8/20 μs.

Trecho retirado da NBR 5419-4/2015

Aluguel de Equipamentos, conheça nossos serviços.

aluguel de miliohmimetro, aluguel de câmera termográfica florianópolis, aluguel de miliohmimetro Florianópolis.

Monitoramento e manutenção preditiva.

Atualmente, o uso do sensoriamento térmico e imagens térmicas para o monitoramento e manutenção preditiva, é provavelmente o mais comum de todas as aplicações dentro da termografia. De verificações pontuais periódicas das temperaturas de mancais de máquinas de rotação ou quadros elétricos. Até uso para programas de manutenção preditiva totalmente. Termografia em Florianópolis

O monitoramento das condições de funcionamento é cada vez mais utilizado com a implantação de mais equipamentos de termográfica (KAPLAN, 2007). Muitas vezes a implantação desses programas de monitoramento com equipamentos de termografia, é marcada por comportamento errático ou uso operacional incorreto do equipamento, tornando-se uma operação dispendiosa e ineficiente, o que leva ao fracasso desse tipo de serviço. Termografia em Florianópolis

O uso de sensores térmicos de infravermelho e geradores de imagens têm crescido ao longo dos últimos 25 anos e se tornado universalmente aceito para a operação e manutenção de usinas de energia e transmissão. Os dados de termografia de centenas de pesquisas de linha de energia foram recolhidos e as normas têm sido desenvolvidas para o comportamento térmico de equipamentos elétricos e distribuição elétrica. Termografia em Florianópolis
Atualmente, no Brasil, a ABNT possui diversas normas sobre o tema “Termografia”, e que podem ser utilizadas como referência. A Tabela 3 apresenta as normas em vigor.

Normas ABNT sobre Termografia Normas em vigor ABNT-NBR-16292:2014

Ensaios não destrutivos —

io não destrutivo — Termografia — Metodologia de avaliação de temperatura de trabalho de equipamentos em sistemas elétricos ABNT-NBR-15763:2009 Ensaios não destrutivos – Termografia – Critérios de definição de periodicidade de inspeção em sistemas elétricos de potência ABNT-NBR-15718:2009 Ensaios não destrutivos — Termografia — Guia para verificação de termovisores ABNT-NBR-15424:2006 Ensaios não destrutivos – Termografia – Terminologia
Fonte: ABNT (2014).

Alugue uma câmera termográfica aqui

Aluguel de câmera termográfica e Aluguel de Miliohmimetro
Componentes do SPDA, problemas relevantes.

D.5.1 Geral

Os sistemas de proteção contra descargas atmosféricas são construídos por vários componentes
diferentes, cada qual com uma função específica dentro do sistema. A natureza dos componentes e
os esforços específicos aos quais eles estão sujeitos requerem considerações especiais no preparo
de ensaios de laboratórios para verificar seus desempenhos. para raios união da vitória

D.5.2 Captação para raios união da vitória

Os efeitos no subsistema de captação surgem de ambos os efeitos: mecânicos e térmicos (como
discutido a seguir, em D.5.3. Mas deve ser notado que uma alta parcela da corrente da descarga atmosférica flui no condutor de captação atingido). para raios união da vitória

E também, em alguns casos, efeitos de erosão de arcos, particularmente em componentes naturais de SPDA. Como coberturas metálicas finas ou acabamentos metálicos de paredes (onde perfuração ou elevação de temperatura na superfície interna pode ocorrer) e condutores suspensos.

Para efeitos de erosão de arcos, dois parâmetros de ensaios principais devem ser considerados: a carga da componente longa da descarga atmosférica e sua duração.
A carga impõe a entrada de energia na região de contato do arco. Em particular, as descargas atmosféricas de longa duração mostram-se as mais severas para este efeito, enquanto que as descargas atmosféricas de curta duração podem ser desprezadas.

D.5.3 Descidas

Os efeitos em condutores de descida causados pelas descargas atmosféricas podem ser divididos em
duas categorias principais:
a) efeitos térmicos devido ao aquecimento resistivo;
b) efeitos mecânicos relacionados às interações magnéticas, onde a corrente da descarga atmosférica
é dividida entre condutores posicionados próximos um do outro, ou quando há mudanças de
direção da corrente (dobras ou conexões entre condutores posicionados em um dado ângulo, um
em relação ao outro).

Na maioria dos casos, estes dois efeitos atuam independentemente um do outro, e ensaios de laboratório separados podem ser feitos para se verificar cada efeito.

Esta aproximação pode ser adotada em todos os casos em que o aquecimento desenvolvido pela passagem da corrente das descargas atmosféricas não modifique substancialmente as características mecânicas.

Trecho retirado da NBR5419-2015

× Entre em contato